Treceți la conținutul principal



DEFINITIONAlkyne are called unsaturated acyclic hydrocarbons containing in their molecule a triple bond. Between 2 at. C and the ratio and the ratio between no. of at. C and H is given by the formula CnH2n-2 where n = no. of at. R of the molecule.
Features: alkynes are: hydrocarbons

( NE = 2, due presents leg.π in connection component. Triple )
Nomenclature. Homologous series.
            Giving obtain integer values ​​of n homologous series in which the terms in any homologous series, 2 consecutive terms is differentiates between them by a methyl group. (-CH2-)

   Name alkynes are formed by replacing suf - year of the corresponding alkane with suf​​-ina. Homologous series starts at n = 2

Etina (acetilena)
 Alkyne radicals:
- CH = CH - CH C-ethynyl ethylene- CH3-C C - propynyl
- CH2-C CH - propagil

Isomerism in alkyne.
Alkynes are isomers of functions to:
                                             dinuclear-alkanes (spirit)
Alkynes, n = 4 presents the phenomenon of flavor. position that has given the possibility of triple bond. to occupy different positions in the chain
        Butina shows the next two position isomers
C4H8: CH C-CH 2-CH 3 1 Butina
                CH3-C C-CH 3 2 Butina

Structure alkynesIn chain alkynes meet two types of atmospheres. of C.▪ 2 at. the sp hybridized C - two at. involved in the formation of C tiple connections.▪ at. of sp3 hybridized C - involved in the formation of simple bondAcetylene-first term of homologous series shows a structure (diagonal symmetry) gave hydrocarbon symmetry of 2 at Digene sp. of C. Due sp hybridization angle and distance between the 2 at. R = 1.21 Å triple linked from:
-1.54 Å in leg, C-C C ≡ C 1.21 Å
-1.33 Å in leg, C = C <180 ˚All due to hybridization and distance decreases from 1.1 in the case of CH-H Csp3 0.6 in Csp-H HC ≡ CH 0.6 ÅConsequently discrete sp hybridization at. of C is the polarization leg. C-H more pronounced than the other leg.Contact CSP - H = leg polar S-on and S + H. Csp Csp-H. This polarization of the bond gives acetylene, respectively alkynes with triple marginal connection weak acid character!
Getting alkynesI ENGINEERING
January. Methane: Cracking the arc-
-The incomplete combustion
February. As carbide (CARB) CaC2
II Laboratory methods:         
          1. )  Double elimination hydrohalic of geminal or vicinal dihalo derivatives
2. ) Determination Additional alkynes by alkylation of metal acetylenes
I 1. Obtaining methane :       
 At high temperatures 1500 ˚ C => transfer of methane in acetylene ˚
2CH4-> C2H2 +3 H2
Industrial transformation is done by two methods differ by the source of energy for reaction
It identifies:a process for the cracking of CH4 in the electric arcb incomlete combustion process
a) If this method provided the energy needed for decomposition reaction esste elements and occur between the two metal electrodes fed from a DC source. Besides the main reaction takes place and a number of side reactions and what their stopping place ptr sudden splashing of the reaction medium with cold water. There can still be avoided C reaction forming free
1500 ˚ C
CH4 -> C +2 H2
The method is applied to Borzesti

b)   In the case of this process methane is introduced into the reactor utilizt on the one hand, to obtain acetylene RTP, RTP and on the other hand the supply of heat by combustion. And in this case secondary reactions occur most important of which is the reaction for obtaining synthesis gas
CH4 +1 / 2O2-> CO +2 H2
Acetylene carbon 2.Obtinerea Ca
As the ionic compound carbide = Ca 2 + and C-2 2 - ion C2 is made up of two atmospheres. The Chidrocarborizati sp joined by a triple leg. and that we find a negative charge each HC ≡ CHIn CaC2cele two positive charges of carbide ions were neutralized by Ca 2 +
Industrial CaC2 (carbide) is obtained by reduction to 2500 ˚ C with metallurgical coke Ca oxide obtained by thermal decomposition of limestone
800-1000 ˚ C
------------------- CaCO3> CaO + CO2
2500 ˚ C
CaO + 3C ----------------> CaC2 + CO

CaC2 is an ionic carbide (acetylene) to hydrolyze the metal release in normal conditions with acetylene. Reaction applies to both small-scale genre. Acetylene when oxyacetylene welding and industrial scale.
The reaction is violent and fast
CaC2 +2 H2O --------------> Ca (OH) 2 + C2H2
acetylene generator

Metals LaboratoryJanuary. Removal of hydrohalic of dihalo derivativesa vicinal:Transformation occurs in the presence of KOH / alc at a temperature of 100-150 ˚ C. In the first stage (I) derivative obtained hydrohalic elimination occurs. halog. That in the second (II) phase at higher temperature of 150 ˚ C to remove hydrohalic appropriate alkyne transformation.

Alc alc KOH KOH-HC-CH----------------->-C = CH------------>-C ≡ C-
XX 100-150 ˚ CX t> 150 ˚ C

Alc alc KOH KOH
CH2-CH2 ------------> CH = CH2 ------------------> HC ≡ CH
100-150 ˚ C Cl Cl Cl t> 150 ˚ C
- HCl-HCl

Alkenes not deshidrogeneaza the alkyne.
 The transformation of an alkene in alkyne is achieved through a sequence of
reactions such as:KOHalc> C = C <+ Br2 ------ >> C-C <------>-C = C <----->-C ≡ C------> CH2 = ------- CH2> CH ≡ CHBr Br

100 +50 ˚-HBrCH2 = CH2 2 Br ---> CH2-CH2 ------> CH = CH2 -----------> CH ≡ CH
HBr Br Br Br-t> 150 ˚ C

Alc alc KOH KOHCH3-CH = CH + Br2 -----------> CH3-CH-CH2 --------------> CH3-CH = CH2 ------ -----------> CH3-C ≡ CH
100-150 ˚ HBr Br Br-Br t> 150 ˚-HBr


CH2 = CH 2 C ≡ CH

Styrene Phenyl acetylene                   
Br Br
Br2 + CH = CH 2 C ≡ CH CH-CH2
-----------> ----------->

b) Double dehydrogenation of a secondary germinal dehalogenat
The reaction takes place in the presence of KOH solution in stage Alcolica getting monohalides they correspond vinyl and stage IIA to the alkyne
x-Hx-HX-C-CH 2 ------------>-C = CH------------>-C ≡ C-
x KOH KOH alc alc x
Vacin dihalo derivatives are obtained from the reaction of a group in pentahalide crbonil P
! C = O, PX5 ----------> C
-Pox3 x
carbonyl gr. Carbonyl
  Thus the acetic alkyd can get acetylene

Cl Cl alc KOH
CH3-CH = O + 5e ----------> CH3-CH3 ----------> CH3-CH ----------> CH2 = CH- ---------> CH ≡ CH
POCl3 Cl-Cl-HClphosphorus oxychloride
CH3 CH3 Cl
C = O + 5e ---------> C -------------> CH = CH ---------> CH3-C ≡ CH
POCl3 CH3-CH3 CH3 Cl Cl-HCl

CH3-CH2C = O ---------> CH3-C ≡ C-CH3

CH3 CH3-CH2-CH2 Cl
C = A + --------- 5c> C ---------> CH3-CH = C-CH 3 ---------> CH3-C ≡ C-CH3
CH3 CH3 Cl Cl-HCl

Obtaining higher alkynes by alkylation with halogenated conp (seeextensively composition acetylene subsection ionic substitution reactions at CSP) alkynes with triple marginal reaction with Na metal contact at 150 ˚ C by a substitution reaction of H Csp marginal acetylides getting a monoacid. This acetylene can react with a halogenated taking place subst. Na and the formation of a superior alkyne                                     
 150 ˚ C + + + HR-C ≡ CH + Na --------->-C ≡ C ---------->-C ≡ C ---------->-C ≡ CR

Thus the accetilena can be achieved by any alkyne triple monoalchinarea marginal edge and the alkyne triple dialchinare a boundless
100 ˚ C _ + + X-RCH ≡ CH + Na ---------> CH ≡ C Na --------->-CH ≡ CR
-1/2H2 Na-NaX + Imp ptr chain stretches, entered C
(200 ˚ C) -1/2H2
+ __ +
2 R'-X
--------> R'-C ≡ C-R 'Imp-2Nax because they get triple the middle

CH4 --------> CH ≡ C-CH3

1500 ˚ C + Na +-Cl CH3
2CH4 ---------> CH ≡ CH -------------------> --------- CNA ≡ CH> CH ≡ C -CH3
-150 ˚ C-1/2H2-3H2-NaCl

CH4 ---------> CH3-C ≡ C-CH3

1500 ˚ C Na + Na +2 Cl CH3-
2CH4 ---------> --------- CH ≡ CH> CH ≡ CNA ---------> ≡ NAC NAC ---------- > CH3-C ≡ C-CH
-3H2 1500 ˚ C-1/2H2 200 ˚ C-H2-H2-2NaCl

CH4 ---------> CH3-CH-C ≡ C-CH-CH3

1500 ˚ C + Na + Na2CH4 ---------> --------- CH ≡ CH> CH ≡ CNA ---------> NaCl ≡ CNA ---------> CH3-CH-Cl + + Cl-NAC NAC ≡ CH-CH3
3H2 150 ˚ C-CH3 CH3-NaCl
---------> CH3-CH-C ≡ C-CH-CH3
NaCl CH3-CH3

Physical Properties
Acetylene is a colorless gas with pleasant ethereal odor. Acetylene carbide comes from presenting a garlicky odor due to impurity carbide. It is soluble in water volume ratio 1: 1 (one of the few oil-soluble H2O). The property is due to the acetylene CH bond polarity. It is soluble in organic solvents (acetylene).
Can not compress under pressure in steel cylinders as an explosion occurs. Are used to prevent its special steel cylinders filled with a porous mass of asbestos or kisellgen which was impregnated with acetone.
On 12 atm 300 l 1l dissolved acetylene acetylene.

CH3-C = C-CH 3 ---------> CH3-C ≡ CH

[A] CH3-CH3 CH3 CH3 tilt alc KOH-HClCH3-C = C-CH 3 ---------> C = O + O = C ---------> C ---------> CH2 = C-CH3 ---------> CH ≡ C-CH3
KHnO4 + H2SO4 CH3 CH3 CH3-CH3 + HCl Cl 5e

HClCH2 = CH-CH2-CH3 + HCl ---> CH3-CH-CH-CH2-CH3 ------> CH3-CH + CH-CH3 + Br2 ---------> CH3- CH-CH-CH3
Alc KOH Br Br
---------> CH3 CH3 CH3 = C ---------> CH3-C ≡ C-CH3
t.150 ˚ C-HBr alc KOH

CH4 ---------> CH3-CH-C ≡ C-CH-CH3

T = 1500 ˚ C + Na + Na + _ + __ + 2 Cl-CH-CH3CH4 ---------> --------- CH ≡ CH> CH ≡ C Na ---------> Na Na ------- C ≡ C ---------> CH3-CH-C ≡ C-CH-CH3
-3H2 -1/2H2 200 ˚ C 200 ˚ C -1/2H2 2NaCl CH3-CH3

Chemical Properties:
Triple bond of the alkyne component having two links п, alkynes unsaturated character will have a more pronounced than they alkenes.

The main reactions:
I addition of H2, X2, HX, H2O, CH3COOH, CH = CH-CN, HCN
II dimerization reaction
III cyclic trimerization reaction
IV oxidation reaction
V substitution at C sp

I hydrogenation reaction

Can be defined in two stages, the addition product with different degree of saturation according et.
Addition:a) Total - molecular H2 in the presence of finely divided metals (Ni, Pt, Pd) => dividing triple bond in connection simple. As follows:

Ni Pt Pd-C ≡ C-2 H 2 ---------------->-CH2-CH2-alkyne alkane

Ni Pt PdCH ≡ CH +2 H2 ----------------> CH3-CH3Acetylene ethane

Ni Pt Pd-C ≡ CH 2 CH 3 H 2 ----------------> CH3-CH2-CH3

CH ≡ C-CH2-CH3 Ni Pt Pd
1-butene, 2 H 2 ----------------> CH3-CH2-CH2-CH3CH3-C-CH3 butane2-butene

b) part - is done in the corresponding alkene resulting homogeneous catalysis. The reaction is stereo specific reaction the catalyst riding. Thus the use of poisoned Pd catalyst salts Pb 2 +, H => cis isomer

Postări populare de pe acest blog



Simbol chimic : N
Masa atomica : 14
Numar de masa “Z”: 7
Azotul se gaseste in grupa a V-a principala ai in prima perioada in sistemul periodic.
Azotul este un caz incolor, inodor, insipid si non-toxic. El poate fi condensat intr-un lichid incolor si apoi compresat intr-un solid incolor si cristalin.
Nitrogenul are denistatea cu putin mai mica decat a aerului si este mai putin solubil in apa decat oxigenul. El nu intretine viata fiintelor care il respira.
Temperatura de topire a azotului este de – 210, 01 °C , in timp ce cea de fierbere este de – 195, 79 °C.
STARE NATURALA: Azotul este unul dintre gazele extrem de raspandite in natura. El se gaseste atat in stare libera cat si sub forma de compusi:
In stare libera, azotul reprezinta 78% din volumul aerului atmosferic.
Compusii azotului sunt:
-anorganici ( amoniac, azotati, etc. )
-organici (uree, proteine )
Azotul de gaseste intr-o proportie de la 1 la 10 % in fiecare din organismele vii.



Proprietăţi fizice

În funcţie de masa lor molară, alcanii sunt gazoşi, lichizi sau solizi.
Datorită diferenţei mici de electronegativitate dintre atomii de carbon şi hidrogen, alcanii conţin numai legături covalente nepolare. De aceea între moleculele alcanilor se exercită forţe de atracţie van der Waals.
Cu cât molecula este mai mare cu atât energia necesară pentru ruperea forţelor intermoleculare trebuie să fie mai mare, iar punctele de fierbere corespunzătoare vor creşte.

ALCANI C1-C4 C5- C17 C18, C19,…. Stare de agregare ( 25º C) GAZE LICHIDE SOLIDE Puncte de fierbere Cresc cu creşterea masei molare Densităţi ( ρalcani < 1 Cresc cu creşterea masei molare

Dintre izomerii de catenă ai unui alcan, cel cu catenă normală are punctul de fierbere cel mai ridicat, iar izoalcanul cel mai ramificat are punctul de fierbere cel mai scăzut.


Abuzul de droguri II

· Astazi în toata lumea sunt în jurul 190 milioane utilizatori de drogurilor.
· Utilizarea drogurilor sporeste în rândul tinerilor din lume. Majoritatea utilizatorilor au vârsta sub 30 de ani.
· În 1999, numarul tarilor care raporteaza utilizarea drogurilor prin injectare a fost de 136, numarul fiind de 80 în 1992. Dintre acestea, 93 de tari de asemenea identifica HIV printre injectatorii de droguri.
· Cannabis este cel mai utilizat drog în toate partile lumii.
· Costul economic total al abuzului de droguri în Statele Unite se estimeaza aproximativ la 70 miliarde dolari anual.
· Abuzul de cocaina printre somerii din Columbia este de 10 ori mai mare decât printre persoanele angajate.
· Industria drogurilor clandestina se estimeaza la 400 miliarde dolari pe an.

Abuzul de DROGURI
Abuzul de droguri inseamna orice utilizare excesiva, continua ori sporadica, incompatibila sau în relatie cu practica medicala, a unui drog. Consumul poate fi exceptional, în scopul de a înce…